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INTRODUCTION

We have 3 ways to Optimize a function:

• Grid Search

• Gradient Method

• Non-Gradient Methods
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GRID SEARCH

The idea of the Grid Search Model is to apply the objective function to
all elements inside a grid to determine the maximum or minimum
value.

This method is ideal for an objective function that depends on only
one or two parameters, or to check if you have really achieved the
minimum/maximum by fixing other parameters.

First, create a grid that contains a large set, for example, [−10, 10].
After finding the minimum, then use the same number of elements on
a smaller grid, such as [0, 1]. Perform this algorithm until you are
satisfied.

Also, plotting the objective function is very helpful to find its
characteristics.
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GRADIENT METHODS

The idea of the Gradient Methods is to use the gradient of a function
to determine its minimum or maximum.

Instead of calculating the maximum by using all possible inputs like in
the grid search, we can use the gradient of the function and find its
roots.

Hence, let Q(θ) be the objective function and g its gradient. We want
to find θ∗ such that g(θ∗) = 0.
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GRADIENT METHODS

A possible way to find the max/min is to use the function’s Taylor
Expansion.

We are going to iterate the following expression:

θ̂t−1 = θ̂t − Ĥ(θ̂t−1)
−1g(θ̂)

where H(.) is the Hessian matrix of the gradient method. We are
going to iterate this function until g(θ̂) = 0.

To determine if its a minimum or maximum, we look at the Hessian
matrix (positive - maximum — negative - minimum).
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COMPUTING THE GRADIENT NUMERICALLY

The gradient can be approximated by using:

g(θ̂) =
Q(θ̂ + hej)− Q(θ̂ − hej)

2h

where ej is a vector that contains zeros in all elements except j, h is a
very small number.

Be careful with the value of h.
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NON-GRADIENT METHODS

It is also possible to determine the maximum/minimum by using a
algorithm that does not require the gradients.

• SAN: Iteratively explores the solution space, allowing it to
accept worse solutions with a decreasing probability as the
algorithm progresses

• Nelder Mead: The Nelder-Mead method is an iterative
optimization which uses a Simplex. The simplex is modified in
each iteration by replacing its worst-performing vertex with a new
vertex that reflects the behavior of the function
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MOTIVATION

Sometimes we use estimators which there is no close form variance
formula.

Therefore, we need an approach to estimate it. This approach is the
Bootstrap.
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ALGORITHM

First we estimate our model. Let it be:

y = g(xi, θ) + ϵ

We are going to obtain θ̂. However, we cannot compute its variance
analytically. Hence we will use a bootstrap algorithm.
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ALGORITHM

1) Resample your dataset with replacement. That is select randomly
observations to re-construct your dataset and let that it can take
repeated observations.

2) Re-estimate your model and obtain a new parameter. Store this
parameter in a vector.

3) repeat steps 1 and 2, b times.
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ALGORITHM

After obtaining the vector Θ̂B = {θ̂B1 , ..., θ̂Bb} you will calculate the
variance of θ̂ by;

V̂boot
θ̂

=

b∑
i=1

(θ̂B1 − θ̂)′(θ̂B1 − θ̂)

Using the variance you can compute the standard errors and the
estimators confidence interval.
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INTRODUCTION

I will explain the discrete choice model by an example.

• Heterogeneous goods Bertrand model

• There are 4 chocolates bars in the market: 1) Dark chocolate
with peanut butter, 2) Chocolate with peanut butter, 3) Dark
chocolate without peanut butter and 4) Chocolate with peanut
butter.

• Individual can choose which chocolate bar they want to buy
based on their preference.
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INTRODUCTION

Our data is given by:

• which chocolate bar the individual bought

• chocolate bar prices

• product characteristics
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THE MODEL

Suppose that the individual j chooses the Dark chocolate bar without
peanut butter (DC).

Hence, by revealed preference, we know that at current prices, he
prefers this chocolate bar over the other ones. Thus,

u(DC) ≥ u(y) ∀y ̸= DC (1)
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THE MODEL

Suppose that the individual j utility function for the product
characteristics (x) and the good i is given by:

uj(x) = u(x) + ϵj,i

uj(x) = β0 + β1x1i + β2x2i − αpi + ϵj,i

where ϵj,i follows a extreme value type 1, x1,. refers to Dark or Normal
chocolate and x2,. refers to with peanut butter or without it. pi refers to
good i price.
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THE MODEL

We want to estimate the parameters β0, β1, β2, α0. According to our
data, we already have information about the share of each good.
Moreover, each good share on the model can be computed by:

P(u(DC) ≥ u(y)∀y ̸= DC)

Tip for the next step: Look at the error distribution.
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BLP

The BLP model (random coefficient) has the same objective of the
previous one: Estimate the demand under a Bertrand competition
with heterogeneous goods.

However, it is superior because:

• Uses only market-level price and quantity data

• treat prices as endogenous variables

• more realistic elasticities
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BLP

I will present a slightly different model when compared to Nevo’s
Practitioner’s Guide.

The utility function is given by:

Uij =
∑

xjkβik + ϵj + ζik where βik = β̄k + β0
k zi + βkvi

where xjk is characteristic k of good j, zi is demographic
characteristics. Note that there is more heterogeneity than the
previous model (ϵj, ζik, vi).

Let
∑

xjkβ̄k + ϵj = δj, θ1 = β̄k, θ2 = [β0
k , β

k].
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STEP 1: MARKET SHARE

Guessing δj, θ2. Compute the market share using numerical
integration:

sj =

∫
I(uij > uit)dF(ϵi, zi, vi)

Draw nS consumers and verify which good they choose. Calculate
the emprical market share

s̃j =
1

nS

nS∑
i=1

I(uij > uit)

Inversion: s̃j(δj, x, p, θ2) = s −→ δj = s̃−1
j (s, x, p, θ2)
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STEP 2: INVERSION

To guess θ2, we need to find δ as a function of the market share.

δh+1
t = δh

t + log(st)− log(s(δh
t , x, p, θ2))

BLP proved that it is a contraction

20



Numerical Optimization Methods Bootstrap Discrete choice models - Fixed Coefficient Discrete choice models - Random Coefficient

STEP 3: GMM

We know that

δj = xijβ + αPji + ζik(θ)

ζik(θ) = xijβ + αPji − δj

Note that β ∈ θ1 and δj = s̃−1
j (s, x, p, θ2). Hence, we can estimate θ1

and θ2 by a GMM estimation.

21



Numerical Optimization Methods Bootstrap Discrete choice models - Fixed Coefficient Discrete choice models - Random Coefficient

STEP 3: GMM

Let Z be the instruments matrix (costs, number of other products with
similar prices). Our GMM function is given by:

min
θ

ζ(θ)Z′WZζ(θ)

We can rewrite the model as:

min
θ1

[min
θ2

ζ(θ)Z′WZζ(θ)]
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