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INTRODUCTION

A Panel Data can be defined as a dataset which we can observe the
same individual/cities/firms for serveral periods. Hence, we often use
the following notation

• i represents the individual of the observation

• t represents the period of the observation

Let Y represent the income. Hence Yit represents the income of
agent i during time t
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Panel Data

INTRODUCTION

We have different types of Panel Data. In the TA session I will focus
on the balanced and unbalanced panels

• Balanced: We have observations for all individuals during all
periods

• Unbalanced: We are not able to identify the observations of
one agent for all periods

The unbalanced panel might generate the attrition problem, which
the individual does not appear anymore.
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MODEL

We want to estimate β such that

Yit = Xitβ + uit

We can make three different hypothesis about the error term:

• E[uit|Xit] = 0 (pooled estimation)

• uit = αi + ϵit (one-way error component)

• uit = αi + λt + ϵit (two-way error component)

4



Panel Data

RANDOM AND FIXED EFFECTS

Using the two-way error component, we can see the parameters αi

and λt in two different ways:

• Fixed Effects: Parameters

• Random Effects: Random Variables

5



Panel Data

FIXED EFFECTS

We want to estimate the following model

Yit = Xitβ + αi + ϵit

We can estimate β using the following estimation

Ỹit = X̃itβ + ϵ̃it

Where X̃it = X̃it − Ȳi and Ȳi = T−1∑Yit. By using this approach we
can cancel the αi part from the error term
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FIXED EFFECTS

If T = 2 we can also use the first difference estimator

∆Yit = ∆Xitβ +∆ϵit

where ∆Yit = Yit − Yit−1. If T > 2 the estimator is different from the
fixed effect.
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FIXED EFFECTS

We can also estimate the Fixed Effect estimator by using a LSDV
approach

Yit = Xitβ + D′
iα+ ϵit

where Di = 1 for individual i, else Di = 0.
Using the FWL theorem we obtain βLSDV = βFE.
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RANDOM EFFECTS

In this estimation we treat αi as a random variable. Hence, we need
some assumptions to perform the random effect estimation:

E[αi|Xi] = E[ϵit|Xi] = 0
E[α2

i |Xi] = σ2
α, E[αiϵit|Xi] = 0

E[ϵitϵjt|Xi] = 0, E[ϵ2
it|Xi] = σ2

ϵ .

Hence, we can use a GLS estimation to obtain the random effects
parameter

β̂RE =

(
N∑

i=1

X′
iΩ

−1
i Xi

)−1( N∑
i=1

X′
iΩ

−1
i Yi

)
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HAUSMAN TEST

We can use the Hausman test to test the endogeneity of a variable.

Note that in the Fixed-Effect estimation we treat Di as a relevant part
of the error term that if it is not added to the model, we would have
problems of omitted variables.

In the other hand, the Random Effects treat αi as a random variable
satisfying the exogeneity property E[αi|Xi] = 0.

Hence the Hausman test tests if Di is exogenous, against the
alternative of Di being endogenous. The test statistic is given by:

(β̂FE − ˆβRE)
2

ˆσβFE
2 − ˆσβFE

2 ∼ χ2
k−1
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TIME EFFECTS

Consider the LSDV approach for the Fixed Effect.

Note that we are considering only the individual fixed effect.

However, time might also influence the dependent variable. Hence,
we can use the following expression to control for time.

Yit = Xitβ + D′
iα++γt + ϵit
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TIME EFFECTS

One limitation of the previous approach is that we are considering a
linear time trend. Consequently, we are aggregating all periods into
one variable, this might result in a strange parameter.

Consequently, a random shock like the pandemics influence the
parameter in some point that its interpretation might not be precise.
Hence, we can use Time Fixed Effects to account for the time effect
and capture more heterogeneity.

In this formulation we add dummies for each period in our data base.
Consequently, the model is given by:

Yit = Xitβ + D′
iα+ γ′Dt + ϵit
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TWO WAY FIXED EFFECT

Suppose we want estimate the following

Yit = Xitβ + uit

Where uit = λt + αi + ϵit. Hence the TWFE estimator is given by:

Ỹit = X̃itβ + ϵ̃it

where Ỹit = Yit − Ȳi − Ȳt + Ȳ
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DYNAMIC PANEL

We can also add lagged variables to our estimation using a panel
dataset. For example

Yit = θYit−1 + Xitβ + αi + ϵit

However, using this approach we might generate problems of
endogeneity. Hence, we need to come up with a Instrumental
Variable approach and use the GMM to estimate the model.
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ANDERSON AND HSIAO (1982)

By using the first difference approach we obtain

∆Yit = θ∆Yit−1 +∆Xitβ +∆ϵit

Hence, they use ∆Yit−2 or Yit−2 as an instrument for ∆Yit−1, since

Cov(∆Yit−2,∆ϵit) = Cov(Yit−2 − Yit−3, ϵit − ϵit−1) = 0

Cov(∆Yit−2,∆Yit−1) = Cov(Yit−2 − Yit−3,Yit−1 − Yit−2) ̸= 0
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ANDERSON AND HSIAO (1982)

Therefore, we can estimate the model by using the IV estimator:

(γ̂, β̂) = (Z′X̃)−1(Z′Ỹ)

where Ỹ = Yit − Yit−1, X̃ = (∆Yit−1,∆X′
it), Z = ∆Yit−2
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ARELLANO-BOND (1991)

The Arellano-Bond approach uses a GMM estimation with one
moment equation for each period:

if T = 3:

∆Yi3 = θ∆Yi2 +∆ϵi3

Hence we have one moment equation and instrument ∆Yi2 using Yi1
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ARELLANO-BOND (1991)

if T = 4:

∆Yi4 = θ∆Yi3 +∆Xi4β +∆ϵi4

∆Yi3 = θ∆Yi2 +∆Xi3β +∆ϵi3

Hence we have two moment equations, where we instrument ∆Yi3

using Yi1,Yi2 and instrument ∆Yi2 using Yi1
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ARELLANO-BOND (1991)

Consequently, the moment conditions are given by:

E[Zi(ϵit − ϵit−1)] = 0

And

Zi =



Yi1 0 ... 0
0 Yi1Yi2 ... 0
. .

. .

. .

0 0 ... Yi1Yit−2


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ARELLANO-BOND (1991)

We can estimate the model by minimizing:

∆ϵ′ZANZ′∆ϵ

Where AN us the weighting matrix, that can be defined as:
two-step GMM:

AN =

(
N−1

N∑
i=1

Zi∆ϵ̂i∆ϵ̂i
′Zi

)−1
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ARELLANO-BOND (1991)

one-step GMM: Let H be a matrix with main diagonal equal to 2, -1
on the second main diagonal and 0 everywhere else.

AN =

(
N−1

N∑
i=1

ZiHZi

)−1
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