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INTRODUCTION

One of the assumptions to estimate an OLS model is the exogeneity
condition. This condition implies that the observable elements are not
related to the error component.

Mathematically, this condition is given by:

E[Xϵ] = 0
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EXAMPLE

However, sometimes this hypothesis is not satisfied. One example is
the education variable. Suppose we want to estimate the following
model like Angrist and Krueger (1991):

log(Wi) = Xiβ + ρEi + ϵ

where log(Wi) is the log income of individual i, Xi is a vector of
covariates and Ei is the education of the individual i.

We want to estimate the return of education on wages. Hence, we will
focus on ρ
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EXAMPLE

Note that there might be other variables related to education that are
not accounted in the model.

For example richer parents are able to finance best education to their
students when compared to poorer ones. Hence, the variable of
parents income is present on the error term and it is correlated with
the education of the son.

Hence, we have an endogeneity problem, i.e. E[ϵ|Xi,Ei] ̸= 0.
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HOW CAN WE SOLVE THE ENDOGENEITY PROBLEM?

We need to define an Instrumental Variable (IV) to capture the
variation of the education at the same time that it is not correlated
with the error term.

Hence, the instrumental variable should satisfy two conditions:

Exogeneity: E[ϵ|Z] = 0
Relevance: E[XZ] ̸= 0
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HOW CAN WE SOLVE THE ENDOGENEITY PROBLEM?

In the Example, various papers have tried to determine good
instruments for education such as: education of the parents, distance
to the school and the quarter of births.

Let Z2 be the instrumental variable for E and let X be exogenous.
Hence, the vector of instrumental variables is given by Z = [X,Z2]

′
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CONDITIONS

Additionally to the conditions of Exogeneity and Relevance, we need
one more condition to identify the parameter: the dimension of the
instrument vector should be at least equal to endogenous variable
vector.

If it is equal we have a just-identified model. If we have more
instruments than endogenous variables we have a over-identified
model.
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REDUCED FORM:

To simplify the problem let’s look at the model with only Ei. We
already know that:

log(Wi) = ρEi + ϵ

Moroever,

Ei = Γ′Z2 + u

Hence, the reduced form can be written as:

log(Wi) = ρ(Γ′Z2 + u) + ϵ

log(Wi) = ρΓ′Z2 + ρ ∗ uϵ

log(Wi) = λZ2 + vi
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IV ESTIMATOR

Suppose we are on the just-identified case.

Estimating Ei = Γ′Z2 + u we obtain that Γ̂ = (Z′Z)−1(Z′E).

When estimating log(Wi) = λZ2 + vi, we obtain λ̂ = (Z′Z)−1(Z′Y).

Hence,

λ̂ = β̂Γ̂′

(Z′Z)−1(Z′Y) = β̂(Z′
2Z)−1(Z′E)

β̂ = (Z′E)−1(Z′Y)

This is the IV estimator.
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2SLS

Now, suppose we are on the over-identified case.

We know that log(Wi) = ρΓ′Z2 + v. Let w = ΓZ2. The estimator for ρ
is given by:

ρ̂ = (w′w)−1(w′Z)

We can obtain the predicted value of the regression of Ei on Z2.
which is given by: ŵ = Z′(Z′Z)−1Z.

Combining the two we have:

λ̂ = (E′Z(Z′Z)−1Z′E)(E′Z(Z′Z)−1Z′y)

This is the 2sls estimator.
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2SLS

How to estimate it?

• Reg E on Z and obtain Ê

• Reg Y on Ê
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WHAT IS IDENTIFICATION?

During class you learned the formal definition of Identification. Here I
am going to explain my understand about Identification and its
importance.

Identification is a set of necessary restriction/hypothesis made to
identify parameters and consequently have economic understand
about this variables.
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WHAT IS IDENTIFICATION?

Look at the reduced form of the IV estimation.

log(Wi) = ρΓ′Z2 + vi

We are interested on estimating ρ. Can you guess what is the
Identification hypothesis behind this estimation?
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WHAT IS IDENTIFICATION?

The main hypothesis to identify the return of education is the
Relevance hypothesis: E[ZE] ̸= 0.

Note that if E[ZE] = 0 then Γ = 0 and the estimation is given by:

log(Wi) = 0′Z2 + vi

Hence, we cannot know if there is return for education since our
instrument is not relevant we cannot evaluate the parameter ρ.
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PARAMETRIC IDENTIFICATION

In structural econometrics we need to define the utility function of the
agent to obtain the predicted results.

For example the household utility:

U(cW, lW, cH, lH) = µ u(cW, lW) + (1 − µ) u(cH, lH)

the household utility is given by the weighted sum of the utility of the
husband and the wife

We need to come up with a parametric identification to find µ and the
elasticities between leisure and consumption for both wife and
husband.
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PARTIAL IDENTIFICATION

Until know we always adopted moment equality in our models.
However, a common practice on Industrial Organization problems is
to work with moment inequalities.

For example in a Dynamic discrete choice it is impossible to account
for all possible decisions. Hence we use revealed preferences to
identify the density of the distribution.

Therefore, instead of obtaining a point estimation we obtain a set of
possible results for the estimation
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PROBIT

First, let’s review the Probit model. We want to estimate the following
model

y∗ = Xβ + ϵ

However, we are not able to observe y∗. We observe y that can that
takes value equal to 0 or 1

y =

{
1 if y∗ > 0

0 otherwise
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PROBIT

Hence to estimate the model we rely on the hypothesis that ϵ follows
a N(0, σ2).

P(y = 1) = P(y∗ > 0) = P(Xβ + ϵ > 0)

= P(ϵ > −Xβ) = P
(
ϵ

σ
>

−Xβ

σ

)
= P

(
ϵ

σ
<

Xβ

σ

)
= Φ

(
Xβ

σ

)
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PROBIT

Therefore,

P(y = 1) = Φ

(
Xβ

σ

)
P(y = 0) = 1 − Φ

(
Xβ

σ

)
Hence, we estimate the model using by Maximizing the Log
Likelihood

L(β) =
∑

y log
(
Φ

(
Xβ

σ

))
+ (1 − y) log

(
1 − Φ

(
Xβ

σ

))
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CENSORED DATA

• A regression model is censored when the recorded data on the
dependent variable cuts off outside a certain range with multiple
observations at the endpoints of that range

• Consequently, variation in the dependent variable will understate
the effect of the regressors and the ordinary least squares using
censored data will be biased
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THE CENSORED VARIABLE PROBLEM

Let y be the observed dependent variable, while y∗ is the true
dependent variable. we observe y∗ in the range [a,b]. Therefore,

y =


a if x′β + ϵ < a

b if x′β + ϵ > b

x′β + ϵ otherwise

Assuming a = 0 and b −→ ∞. we have y = max(Xβ + ϵ, 0)
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HOW TO SOLVE IT?

We can use the Tobit estimation. Note that the distribution of our data
is truncated in 0. Consequently, when assuming ϵ ∼ N(0, σ) we have

1) If y∗ < 0 The contribution for the likelihood is given by

P(y∗ < 0) = P(−Xβ < ϵ) = 1 − Φ

(
Xβ

σ

)
2) If y∗ > 0 the contribution of the likelihood is given by

P(y∗ > 0)ϕ(y∗|y∗ > 0) = Φ

(
Xβ

σ

)
1
σ

ϕ((y − Xβ)/σ)

Φ(Xβ/σ)
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HOW TO SOLVE IT?

The Log-likelihood function is given by:

L(β) =
∑

(1 − Di) log

(
1 − ϕ

(
Xβ

σ

))
+ Di

(
log

(
ϕ

(
y − Xβ

σ

))
− log σ

)
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HOW TO SOLVE IT?

We can use a Semiparametric approach:

• Censored Least Absolute Deviation (CLAD)

• Symmetrically Censored Least Squares (SCLS)

• Identically Censored Least Absolute Deviation (ICLAD)

We are not going to focus on that
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TRUNCATED DATA

Suppose we have data on how much each student can lift on the
chest press.

The students that go to the gym have positive value for the weight
they can lift. However, the students who do not go to the gym have
value equal to 0.

Hence, we have a problem of selection bias. Since we are not able to
capture how all students can lift on the chest press, but only the
students that go to the gym.

25



Instrumental Variables Identification Limited Dependent Variable and Selection Models

TRUNCATED DATA

Hence, we want to estimate the following model

y∗1 = X1β1 + ϵ1

However, we are not able to observe y∗. We observe y defined as

y1 =

{
y∗1 if y∗

2 = 1

0 otherwise

where y∗2 = X2β2 + ϵ2
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HECKIT

The idea of the Heckit estimation is to introduce the inverse mills ratio
into the equation that would account for the probability of a student to
go the gym.

y∗
1 = X1β1 + σ12λ(X2β2) + ϵ1

where λ(X2β2) is the inverse mills ratio defined as:

ϕ(X2β̂2)

Φ(X2β̂2)
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HECKIT

Two-step Heckit:

1) Estimate β2 by Probit

2) Obtain the inverse mills ratio and add it as a parameter on the
estimation of y∗

1
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